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Abstract 
This paper presents a critical analysis of the available evaluation methods to 
calculate the chain orientation distribution function and the orientation factors 
of uniaxially oriented polymer glasses from wide angle X-ray scattering data. 
Experimental results obtained on a stretched atactic polystyrene sample are 
used for the calculations. 

Introduction 
It was discovered long ago [1] that  the azimuthal intensity of crystalline reflect- 
ions observed in wide angle X-ray scattering (WAXS) patterns of semicrystalline 
materials could be used to characterize anisotropy. The reason for this is that  
the scattered intensity, at a given angle to the meridian, is related to the number 
of crystallites inclined at the same angle to the orientation direction. This result 
can be used to quantify orientation of the crystallites, in terms of statistical aver- 
ages of the orientation distribution function (ODF). In polymer materials 
science this approach was first applied for semicrystalline polymers [2,3] and 
was later extended to include the amorphous polymer phase [4, 5]. In this paper 
the results of the most frequently used mathematical methods, to calculate the 
orientation factors (OF) and the entire ODF, will be compared using WAXS data 
obtained on a drawn atactic polystyrene sample. 

The ODF of a polycrystalline material is defined as the probability of the edges of 
the crystalline unit cell being aligned in a given spatial direction [2,6]. In the 
most general case ODF is a function of three independent variables, the three 
Euler angles, which specify the spatial position of the crystalline unit  cell [6]. 
However, in order to describe anisotropy in amorphous polymers, in most cases 
only the main chain orientation must be characterized [2,4]. The ODF is then 
defined as the probability of having a polymer segment aligned in a given direc- 
tion. For most applications, polymer segments can be regarded to have cylindri- 
cal symmetry. Therefore the corresponding ODF is related to the segment axis 
orientation, which can be specified using two angles only [2]. It must  be men- 
tioned that  if rotatable side groups are attached to the main chain, their relative 
position may also change during orientation [7]. If so, both main chain and side 
group orientations must  be described. This possibility will not be discussed fur- 
ther in this paper. 



234 

In the characterization of the orientation of polymers, further simplifications 
are possible in most situations due to symmetry properties of the orientation tex- 
ture. For example, transverse isotropy holds for many important applications 
[2]. This means that  there is no preferential orientation in a plane which is per- 
pendicular to a single direction; for example, the stretching direction (if we deal 
with uniaxially drawn materials). In such cases ODF for glassy polymers is a 
function of one angle only, that  angle is dosed by the preferred orientation direc- 
tion (POD) and the segmental direction [2]. This structural symmetry is usually 
called fiber symmetry. In this paper only this sample symmetry will be further 
considered. 

The Chain Orientation Distribution Function and the Orientation 
Factors 
The ODF, h(z), for uniaxially oriented amorphous polymers with segments 
showing cylindrical symmetry, is related to the fractional number of segments, 
dN(x), having the segmental axis lying at an angle between X and z+d~ to the 
POD. According to the definition [2,4]: 

dN(x) = h(Z) sinx d Z (1) 

with the normalization condition 

~h(~) sinx dx = 1 (2) 
o 

It is not the entire ODF but  rather its low order moments that  are used to quanti- 
tatively characterize anisotropy [2,4]. In case of uniaxial symmetry, these 
moments are averages of cosn~ (for n=2k, k=0,1,2,...) and are defined as: 

rd2 

f H(X)cosnx sin)~ dz 

< cosnz> = 0 ~/2 (3) 

~ H(X) sinz dz 
0 

where H(Z) is not necessarily normalized to unit  integral, i.e. H(z)=const'h(z). 

In expressions describing anisotropy of physical properties, well defined func- 
tions of the above moments are used. These are often called orientation factors 
(OF) [2,4]. The n-th order expressions for OF correspond to Legendre polynomi- 
als of n-th order, Pn(COSX) [2,4]. For example, the second order OF (f2) which is 
needed e.g. to describe optical anisotropy, is written as: 

1 
f2 = <P2(c~ )> = ~ (3<c~ >-  1) (4) 

where < ... > corresponds to an ensemble average over h(z). The value of f2 is 1 
for perfect parallel, and - 0.5 for perfect perpendicular, chain orientation. For 
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isotropic samples f equals zero which corresponds to an average orientation 
angle of 54.7 ~ (1/3 direction cosines, i.e. equal weights to all the three spatial 
directions). If the polymer shows uniaxial symmetry, then the next two non- 
vanishing OF's, which are needed e.g. to describe mechanical anisotropy [2], 
have the following form: 

1 
f4 = <P4(c~ )> = 8 (35<c~ >" 30<c~ + 3) (5) 

f6 = <P6(c~ )> = ~6 (231<c~ " 315<c~ + 105<c~ " 5) (6) 

The Method of the Azimuthal Breadth [8] 
The interrelation between the WAXS azimuthal intensity and the ODF can be 
used to obtain a simple, empirical measure of the orientation. This can be 
obtained either from the azimuthal breadths [3] or from the normalized maxi- 
mum to minimum height of the measured WAXS azimuthal intensity I(Z) [8]. 
However, this approach can be applied to a rough estimation of the second order 
OF only. One possible way to calculate f2 with this method was discussed by May 
[8] who used the following expression: 

T 
f2 "~ 1 - imax (7) 

where i- is the average, and Ima x is the maximum azimuthal intensity. The use 
of the expression (7) is further restricted to equatorial reflections. 

The Legendre Polynomials Method (LPM) [10] 
The first analysis of a WAXS azimuthal profile at  constant diffraction angle in 
terms of Legendre polynomials was carried out by Deas [9]. His method was 
later generalized to obtain the values of OF's of any order from an arbitrary 
reflection [10]. For example, for equatorial reflections, the even order moments 
are writ ten as: 

f2n = <P2n(C~ )> = Ccorr 

x/2 

f (-1)n22n(M)2 0 
(2n)I 

(n=l, 2,...) 

I(Z) P2n(COSZ) sinz dz 

rd2 

f I(Z) sinz dz 
o 

(8) 

where Ccorr refers to a correction factor which takes into account the intrinsic 
azimuthal linewidth [4] (in this paper we assume further Ccorr = 1 since its 
value equally affects all calculated OF data, independently of the applied calcula- 
tion procedure), and the fraction following Ccorr  in  Eq. (8) {i.e. (-1)n22n(n!)2/(2n)!} 
depends on the nature of the X-ray reflection. In case of sharp molecular scat- 
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tering the entire form of h(z) can also be estimated using a series expansion with 
Legendre polynomials [10]. The number of terms that must  be included in the 
series depends on the sharpness of h(z). For equatorial WAXS reflections, the 
series expansion with the first four non-vanishing terms has the form: 

1 72 208 
h(Z) = ~ [1 - 10<P2>iP2(cos X) + ~- <P4>iP4(cosz) - -~-<P6>iP6(cosz) + ...] (9) 

where  

~2 rd2 

<P2n>I = ~ I(x) P2n(COSZ) sinx d z /  ~ I(z) sinz dz (10) 
0 0 

(n=1,2, ... ) 

A similar equation holds for meridional reflections [10] with different propor- 
tionality constants. 

The Biangardi Method (BM) [11] 
This technique enables the calculation of the entire ODF and thus the values of 
the OF's by inverting Kratky's expression [12] which relates the WAXS 
azimuthal profile to the ODF. The measured azimuthal profile is first expanded 
in a Fourier series: 

N 
I(~) = ~ Aj cos(j~) (11) 

j=0 
where ~=(~/2) - X. 

The ODF is then written using the Aj Fourier coefficients in the following form: 

R-E 
2 

N f (  sin(j~)d~ - - . .  h(z) -- 2 [ i( =oo) - Ajj ] 
j=0 1 - sm2z/cos2z) 1/2 

(12) 

The OF values can be subsequently calculated from equation (3) using the 
numerical values for h(Z) obtained with Eq. (12). This method is applicable for 
equatorial reflections, since it is assumed that the corresponding WAXS reflect- 
ion is caused by intermolecular distances which are perpendicular to the direc- 
tion of the polymer segments [11]. 

Computer Programs 
The ODF and OF calculations were carried out using an AST Premium/386 
microcomputer and the IBM Professional Fortran programming language. A 
computer program for the calculation of Legendre polynomials method was 
developed using some subroutines of the IMSL-PC library [13]. The values of the 
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Legendre polynomials were calculated up to 16th order (n=8 in Eq. (10)) with 
hypergeometric functions F(-n, n+l/2; 1/2; cos2z) [14]: 

(2n-1)!! F(-n, n + l ;  1 ; cos2z) (13) P2n (c~ Z) = (-1) n 2nn! 

where the hypergeometric functions were expanded in the following series 
(which terminates if a or b is equal to a negative integer or zero) [14]: 

1 a(a+l)b(b+l) z2 
F(a,b;c;z) = 1 + ~ z + 2! c(c+l) + ... (14) 

The program to evaluate the Biangardi method was kindly supplied by H. J. 
Biangardi [15]. 

Experimental 
A typical WAXS pattern, obtained on a uniaxially stretched atactic polystyrene 
(PS) sample, was used for the reported calculations. Orientation was performed 
in a tensile test  machine at 108.5 ~ The elongation was stopped at a given 
strain, and the force was kept constant while the sample was quenched by 
applying a cooled air stream. WAXS patterns were obtained on the quenched 
sample using a Siemens D 500 diffraction system equipped with a Huber  texture 
goniometer. The azimuthal intensity profile I(Z) was determined at 20 = 9.9 ~ 
diffraction angle which corresponds to an equatorial reflection. To obtain a true 
I(~) function without influence of overlapping higher order haloes, the WAXS 
pattern was measured between 2 ~ < 20  < 500 diffraction angles and at 8 different 
azimuthal directions between 0 ~ < Z < 900; and subsequently resolved into three 
peaks. The intensity of the first resolved peak was then plotted against the 
azimuth angle. The obtained profile was subsequently fitted by the following 
formula:  

I(Z) = [a sin2~z + I( Z = 0~ = 0 ~ (15) 

Other details of the experiments and the profile fitting procedure are published 
elsewhere [7] and are subject of a forthcoming publication [16]. 

Results and Discussion 
The ODF and OF values were calculated using the analytical I(Z) function de- 
fined by Eq. (15) with a=1.428 and [3=1.380. The values for the a and [~ parameters 
were obtained from the measured azimuthal profile of the considered equatorial 
reflection of the stretched PS sample by performing a non-linear least squares fit 
analysis.  

Figure 1 shows two calculated H(X) orientation distribution functions normalized 
to 1 at the maximum amplitude (at Z=0~ The solid line in Figure 1 corresponds to 
ODF calculated from Legendre polynomials (Eq. (9); with max{2n}=16),; while the 
dashed line represents the result of the Biangardi method (Eq. (12), with max{N} = 
20). The functions are plotted only between Z=0 ~ (corresponding to the POD) and 



238 

A 

-1- 

1.0 

0.~ 

0.{ 

0.4 

0.2 

I ' I ' I w I 

C ' I , I , I , I 
0 2 0  4 0  6 0  8 0  9 0  

% 

Figure 1 

Chain orientation distribution functions for a uniaxially stretched atactic PS 
sample calculated with Legendre polynomials (solid line) and by the Biangardi 

method (dashed line). 

Table 1 

Calculated orientation factors for a uniaxially stretched atactic PS sample 

Method <P2(cosx)> <P 4(cos~> <P6(cosx)> 

May 0.295 n.a.  n.a.  

Le6endre polka. LPM 0.222 0.0218 - 0.00276 

Bian~ardi BM 0.219 0.0239 - 0.00217 

(LPM-BM)/LPM [%] 1.4 - 9.6 21.4 
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Z=90 ~ (corresponding to the perpendicular direction), since due to the axial 
texture, ODF is symmetrical to both the Z=0~ and Z=90 ~ lines. (The maximum at 
0 ~ means that  polymer segments show most likely to the POD.) 

(corresponding to the POD) and Z=90 ~ (corresponding to the perpendicular 
direction), since due to the axial texture, ODF is symmetrical to both the Z=0 ~ 
and Z=90~ lines. (The maximum at 0 ~ means that  polymer segments show most 
likely to the POD.) 

Table 1 shows the first three calculated even order orientation factors obtained 
with the May method (Eq. (7)); using Legendre polynomials (Eq. (8)) and from 
the ODF which was calculated by the Biangardi method (see dashed curve in 
Figure 1). The last row in Table 1 shows the relative differences between the data 
obtained by the Legendre polynomial and the Biangardi methods. 

The method of May yields for <P2(cosz)> a numerical value which is signifi- 
cantly different from the results obtained by the two other techniques. The rea- 
son of the poor agreement is that  this method does not take into account the 
shape of the ODF. The use of this technique is therefore not recommended for 
any quantitative estimation of OF values. The numerical values of the second 
and fourth order orientation factors calculated by LPM and BM agree 
reasonably well. The agreement is less good for the sixth order OF. Nevertheless 
the shapes of the two calculated ODF by LPM and BM match very well (see 
Figure 1). This means that  even a slight change in the shape of the ODF has a 
significant effect on the values of the high order OF's. 

The basic difference between the LPM and BM procedures is that  for LPM the 
values of the OF's are calculated first and with them the ODF calculated after- 
wards; while for BM the ODF is first determined and the OF's are calculated 
subsequently. Although at this stage of our work we do not have any objective 
comparison to say which OF values are more correct, but we believe that  due to 
the mentioned differences in the two procedures the LPM might yield better OF 
values while the BM a better ODF. It must be mentioned that  even with the sim- 
ple I(X) profile used, numerical problems arose in the OF values calculated by 
the LPM if 2n > 16. On the other hand, the more moments that  are known (i.e. 
the more terms that  are taken into account in Eq. (9)) the better the calculated 
ODF approaches the reality. In this respect the Fourier series used by the BM 
"behaved" in our case numerically better and more stable. The use of the 
Biangardi technique is nevertheless restricted to equatorial reflections, while 
the Legendre polynomial method is applicable to any kind of reflection. 
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